Enhanced proteolysis of thiopurine S-methyltransferase (TPMT) encoded by mutant alleles in humans (TPMT*3A, TPMT*2): mechanisms for the genetic polymorphism of TPMT activity.
نویسندگان
چکیده
TPMT is a cytosolic enzyme that catalyzes the S-methylation of aromatic and heterocyclic sulfhydryl compounds, including medications such as mercaptopurine and thioguanine. TPMT activity exhibits autosomal codominant genetic polymorphism, and patients inheriting TPMT deficiency are at high risk of potentially fatal hematopoietic toxicity. The most prevalent mutant alleles associated with TPMT deficiency in humans have been cloned and characterized (TPMT*2 and TPMT*3A), but the mechanisms for loss of catalytic activity have not been elucidated. In the present study, we established that erythrocyte TPMT activity was significantly related to the amount of TPMT protein on Western blots of erythrocytes from patients with TPMT activities of 0.4-23 units/ml pRBC (rs = 0.99; P < 0.001). Similarly, heterologous expression of wild-type (TPMT*1) and mutant (TPMT*2 and TPMT*3A) human cDNAs in yeast and COS-1 cells demonstrated comparable levels of TPMT mRNA but significantly lower TPMT protein with the mutant cDNAs. Rates of protein synthesis were comparable for wild-type and mutant proteins expressed in yeast and with in vitro translation in rabbit reticulocyte lysates. In contrast, pulse-chase experiments revealed significantly shorter degradation half-lives for TPMT*2 and TPMT*3A ( approximately 0.25 hr) compared with wild-type TPMT*1 (18 hr). The degradation of mutant proteins was impaired by ATP depletion and in yeast with mutant proteasomes (pre-1 strain) but unaffected by the lysosomal inhibitor chloroquine. These studies establish enhanced degradation of TPMT proteins encoded by TPMT*2 and TPMT*3A as mechanisms for lower TPMT protein and catalytic activity inherited by the predominant mutant alleles at the human TPMT locus.
منابع مشابه
Polymorphism of the thiopurine S-methyltransferase gene in African-Americans.
The molecular basis for the genetic polymorphism of thiopurine S -methyltransferase (TPMT) has been estab-lished for Caucasians, but it remains to be elucidated in African populations. In the current study, we determined TPMT genotypes in a population of 248 African-Americans and compared it with allele frequencies in 282 Caucasian Americans. TPMT genotype was determined in all individuals with...
متن کاملAssessment of Thiopurine–based drugs according to Thiopurine S-methyltransferase genotype in patients with Acute Lymphoblastic Leukemia
For the past half century, thiopurines have earned themselves a reputation as effective anti-cancer and immunosuppressive drugs. Thiopurine S-methyltransferase (TPMT) is involved in the metabolism of all thiopurines and is one of the main enzymes that inactivates mercaptopurine. 6-MP is now used as a combination therapies for maintenance therapy of children with acute lymphocytic leukemia (A...
متن کاملClinical pharmacogenomics of thiopurine S-methyltransferase.
Thiopurine methyltransferase (TPMT) catalyzes the S-methylation of thiopurine drugs such as 6-mercaptopurine (6-MP), thioguanine and azathioprine (AZA). These drugs are used to treat conditions such as acute lymphoblastic leukemia, inflammatory bowel disease, rheumatoid arthritis, and organ transplant rejection. This review highlights the polymorphisms of TPMT gene and their clinical impact on ...
متن کاملPolymorphisms of the thiopurine S-methyltransferase gene among the Libyan population
BACKGROUND Thiopurine S-methyltransferase (TPMT) is a cytosolic enzyme that catalyses the S-methylation of 6-mercaptopurine and azathioprine. Low activity phenotypes are correlated with polymorphism in the TPMT gene. Patients with low or undetectable TMPT activity could develop severe myelosuppression when they are treated with standard doses of thiopurine drugs. Since ethnic differences in the...
متن کاملGenetic Polymorphism of Thiopurine S-methyltransferase in Children with Acute Lymphoblastic Leukemia in Jordan
Background and Aims: It has been demonstrated that homozygote and heterozygote mutant allele carriers for thiopurine S-methyltransferase (TPMT) are at high risk of developing myelosuppression after receiving standard doses of 6-mercaptopurine (6-MP). The aim of this study was to determine the frequency of TPMT deficient alleles in children with acute lymphoblastic leukemia (ALL) in Jordan and t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 94 12 شماره
صفحات -
تاریخ انتشار 1997